Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach

Authors Jonas van Ertvelde, Anouk Verhoeven, Amy Maerten, Axelle Cooreman, Bruna dos Santos Rodrigues, Julen Sanz-Serrano, Milos Mihajlovic, Ignacio Tripodi, Marc Teunis, Ramiro Jover, Thomas Luechtefeld, Tamara Vanhaecke, Jian Jang, Mathieu Vinken
Published in Journal of biomedical informatics
Publication date 2023
Research groups Innovative Testing in Life Sciences and Chemistry
Type Article


Background: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. Methods: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. Results: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. Conclusions: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.

On this publication contributed

  • Marc Teunis | Associate Professor | Research Group Innovative Testing in Life Sciences & Chemistry
    Marc Teunis
    • Associate professor
    • Research group: Innovative Testing in Life Sciences and Chemistry

Language English
Published in Journal of biomedical informatics
Key words AOP network, Adverse outcome pathway, cholestasis, mechanistic toxicology, shiny application
Digital Object Identifier 10.1016/j.jbi.2023.104465

Innovative Testing in Life Sciences and Chemistry